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Abstract. The Optical Glauber Model is used in
this study in order to understand the initial conditions
in heavy-ion collisions and at the end understand the
relationship between the particles produced after the
collision. In the first part of this study, the initial
geometrical features of the collision as a function of the
impact parameter, such as the number of participating
nucleons and the number of collisions between nucleons
are obtained. Then, after obtaining numerical values
for the number of participating nucleons, the study was
focused on two distinct particles being produced after
the collision and the relationship between them is also
determined from the correlation as a function of the
impact parameter.
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1 Introduction

In an ultrarelativistic collision of nuclei, the complex-
ity of the collision event is much higher compared with
proton-proton collisions, and it seems to be difficult to
study how each event occurred. Given the Glauber
model, one can trace back each collision and even get
some results of the impact parameter, the number of
participating nucleons, and also the number of binary
nucleon-nucleon collisions.

Section 2 discusses the basic history of the Glauber
model, together with the inputs required in order to
carry out a Glauber calculation in a high-energy colli-
sion. Section 3 discusses the Optical Glauber model in
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detail, in which all required formulae are derived, and
the respective results are also discussed. Section 4 dis-
cusses in one way how the Glauber model is related to
experimental data, in which the production of particles
after a collision is studied. The relationship between
these produced particles is also discussed. Finally in
section 5, the current status and future applications of
the Glauber model are discussed, with a reference to
some results obtained during this study.

2 Theoretical Foundations of
Glauber Modeling

2.1 A Brief History of the Glauber
Model

The Glauber model was developed to resolve the prob-
lem of high-energy scattering with composite particles.
This idea was of great interest in the fields of both nu-
clear and particle physics. In 1958, Glauber presented
his first collection of various papers and unpublished
work from the 1950’s. Glauber’s work put the quantum
theory of collisions of composite objects on a firm ba-
sis and provided a consistent description of experimen-
tal data for protons colliding with deuterons and larger
nuclei. Most striking were the observed dips in elastic
peaks, whose position and magnitude were predicted by
Glauber’s theory, by Czyz and Lesniak in 1967 (Miller
et al. 2007).

Bialas et al.’s approach introduced the functions used
in this study. For example, they introduced the thick-
ness function and a prototype of the nuclear overlap
function. They also introduced the optical limit for an-
alytical and numerical calculations (Miller et al. 2007).

As computational processing increased over the past
years, the Glauber Monte Carlo approach has been im-
plemented. This approach was first applied to high-
energy heavy ion collisions in the HIJET model (Miller
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et al. 2007) and has found its way in practically all A+A
simulation codes. This includes HIJING, VENUS and
RQMD (Miller et al. 2007).

2.2 Inputs to Glauber Calculations

2.2.1 Nuclear charge densities

The nucleon density is usually parameterized by a Fermi
distribution with three parameters, commonly known as
the Wood-Saxon nucleon density;

ρ(r) = ρ0
1 + w(r/R)2

1 + exp
(
r−R
a

) (1)

where ρ0 corresponds to the nucleon density in the cen-
ter of the nucleus, R corresponds to the nuclear radius,
a to the skin depth, and w characterizes deviations from
a spherical shape. This is the model that is going to be
used in the calculations that follow, although a reference
to the hard sphere model is also made where necessary.
The hard sphere model treats the density distribution as
a step function, in which the density is constant within
the nuclear radius and then it goes down to zero every-
where outside the nuclear radius range. It is represented
by the following equation,

ρ(r) =

{
ρ0 , r < R

0 , r ≥ R
(2)

In this analysis, only Lead(Pb) nuclei are considered.
Values of the parameters for Pb-207 are given in Table
1 (Alver et al. 2008).

R [fm] 6.62
a [fm] 0.546
w [fm] 0

Table 1: List of values of the parameters for Pb-207
nuclei.

Using the values defined in Table 1, the density dis-
tribution of Pb-207 is plotted (Fig.(1)), where the solid
line is representing the density distribution given by the
Wood-Saxon nucleon density, and the dashed line rep-
resents the distribution given by the hard sphere model.

2.2.2 Inelastic nucleon-nucleon cross section

The Glauber model assumes that the nucleons collide in-
elastically and the number of charged particles produced
on each collision to remain the same on an average. As
the cross section involves processes with low momentum
transfer, it is impossible to calculate this using pertur-
bative quantum chromodynamics. Thus, the measured
inelastic nucleon-nucleon cross section (σNN ) is used as
an input and provides the only nontrivial beam-energy

Figure 1: Density distribution for Pb-207 nuclei.

dependence for Glauber calculations. Diffractive and
elastic processes are not considered in this analysis, al-
though they are measured experimentally and studied
for other research interests (Miller et al. 2007; Esha
2012).

3 Optical Glauber Model
In the following formalism of the Optical Glauber model,
it is assumed that at sufficiently high energies, the nu-
cleons will carry sufficient momentum that they will be
undeflected as the nuclei pass through each other and
also that the nucleons move independently in the nu-
cleus and that the size of the nucleus is large compared
to the nucleon-nucleon force.

3.1 Deriving expressions

The base of the analytical formulae is illustrated dia-
gramatically (Fig.(2)), in which two heavy ions, target
A and projectile B, are shown colliding at relativistic

speeds with impact parameter
−→
b (Miller et al. 2007). In

order to derive the equations that follow, one shall con-
sider two flux tubes located at a displacement −→s with
respect to the center of the target nucleus and hence a

displacement of −→s −
−→
b from the center of the projec-

tile. During the collision these tubes overlap, and this
is what one is interested in, in order to determine the
particles being produced during the collision.

The probability per unit transverse area of a given
nucleon being located in the target flux tube is given
by,

T̂A(−→s ) =

∫
ρ̂A(−→s , zA)dzA (3)

where ρ̂A(−→s , zA) is the probability per unit volume, nor-
malized to unity, for finding the nucleon at location
(−→s , zA). Similarly, the equation for the projectile nu-
cleon is simply,

T̂B(−→s ) =

∫
ρ̂B(−→s , zB)dzB (4)
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where ρ̂B(−→s , zB) has a similar meaning to the pre-
vious one. The information for both ρ̂A(−→s , zA) and
ρ̂B(−→s , zB) is obtained through the nuclear density pro-
file of the respective colliding nuclei. Thus, the product

T̂A(−→s )T̂B(−→s −
−→
b )d2s (5)

then gives the joint probability per unit area of nucleons
being located in the respective overlapping target and
projectile flux tubes of differential area d2s. One shall

define the thickness function T̂AB(
−→
b ), as the integral

over the joint probability given by (5), i.e.

T̂AB(
−→
b ) =

∫
T̂A(−→s )T̂B(−→s −

−→
b )d2s (6)

One can interpret the thickness function as the effec-
tive overlap area for which a specific nucleon in A can
interact with a given nucleon in B, indeed it is purely
a geometrical factor. The probability of an interaction
occurring is then given by

T̂ABσ
NN
inel (7)

where σNNinel is the inelastic nucleon-nucleon cross sec-
tion. Elastic processes lead to very little energy loss
and are consequently neglected in the calculation. Once
the probability of a given nucleon-nucleon interaction
has been found, the probability of having n such inter-
actions between nuclei A and B is given by a binomial
distribution,

P (n,
−→
b ) =(

AB
n

)
[T̂AB(

−→
b )σNNinel ]

n[1− T̂AB(
−→
b )σNNAB ]AB−n

(8)

where the first term is the number of combinations for
finding n collisions out of AB possible nucleon-nucleon
interactions, the second term is the probability for hav-
ing exactly n collisions, and the last term the probability
of exactly AB − n misses.

Figure 2: Schematic representation of the Optical Glauber model
geometry, with transverse (a) and longitudinal (b) views.

Then the total probability of an interaction between
A and B is given by

d2σABinel
db2

≡ pABinel(b) =
∑AB
n=1 P (n,

−→
b )

= 1− [1− T̂AB(
−→
b )σNNinel ]

AB (9)

The total number of nucleon-nucleon collisions as a func-
tion of the scalar impact parameter1 is

Ncoll(b) =

AB∑
n=1

nP (n, b) = ABT̂AB(b)σNNinel (10)

Now the number of nucleons in the target and projectile
nuclei that interact is known as either the number of
participants or the number of wounded nucleons. The
number of participants as a function of impact parame-

ter
−→
b , is then given by

Npart(
−→
b ) = A

∫
T̂A(−→s ){1− [1− T̂B(−→s −

−→
b )σNNinel ]

B}d2s

+B
∫
T̂B(−→s −

−→
b ){1− [1− T̂A(−→s )σNNinel ]

A}d2s (11)

where the integral over the bracketed terms gives the re-
spective inelastic cross sections for nucleon-nucleon col-
lisions. The number of participants can also be approx-

imated to equation (12), given that σNNinel T̂A(
−→
b )/A� 1

Npart(
−→
b ) =

∫
T̂A(−→s ){1− exp[−T̂B(−→s −

−→
b )σNNinel ]}d2s

+
∫
T̂B(−→s −

−→
b ){1− exp[−T̂A(−→s )σNNinel ]}d2s (12)

3.2 Results

In the equations discussed above, only Npart and Ncoll
as a function of the impact parameter, b, are illustrated
(Fig.(3)), in which the calculations are shown for both
the hard sphere model, and also for the Wood-Saxon
nucleon distribution model. All calculations were done
analytically, and where necessary using numerical inte-
gration with the most suitable method for high accuracy.
The inelastic nucleon-nucleon cross section was set to
31.5 mb, which averages the cross-section for inelastic
interaction within the center of mass energy range of 7
to 60 GeV. Smaller impact parameter in a geometrical
picture implies larger overlap, usually termed as central
collisions and larger impact parameter collisions have
smaller overlap region and termed as peripheral colli-
sions. Hence, Npart and Ncoll decrease with increase in
the impact parameter values (Fig.(3)).

4 Relating Glauber Model to ex-
periments

Since neither the value of Npart nor the value for Ncoll
can be measured directly in an experiment, we employed

1Assuming that the nuclei are not polarized, otherwise one
cannot replace the vector impact parameter by a scalar distance.
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Figure 3: NPart and NColl as a function of the impact parameter, showing both the hard sphere and the Wood-Saxon model.

a mapping to the number of particles produced in a
collision in order to understand the applicability of the
Glauber model to experiments. This was done by as-
suming that a finite amount of particles are being pro-
duced in a collision, and a coupling factor was intro-
duced for each particle produced. Indeed, these cou-
pling constants are the measured quantities during an
experiment. Then, after assuming that these produced
particles follow a Poisson distribution, one could map
back to the number of participants in the experiment,
with which one can also get the impact parameter by us-
ing the Optical Glauber model discussed in the previous
section.

4.1 Modeling the production of parti-
cles after collision

As already mentioned, a mapping from the produced
particles back to the number of participants and then
to the impact parameter was implemented. In the fol-
lowing calculations, only two distinct particles are con-
sidered, since we are only interested in how the number
of produced particles correlate with each other. To a
first approximation, it was first assumed that the pro-

duced particles follow a Poisson distribution, but as the
mean number of particles produced is high, statistically,
the Poisson distribution, in the limit of large value of
the mean, approximates a Gaussian distribution. So,
to a second approximation, the produced particles are
assumed to follow a Gaussian distribution, instead of a
Poisson, but leaving the variance and the mean equal to
each other, as is in the case of a Poisson distribution.

We denote the average number of produced particles
by < N1 > and < N2 >, and define their relation with
the number of participants by the following equations,

< N1 >= n1Npart (13)

< N2 >= n2Npart (14)

where n1 and n2 are the coupling constants which are
measured experimentally. For the purpose of the follow-
ing calculations, these are set to 10 and 2 respectively,
with the values being constrained to experimental re-
sults. Also, since the produced particles, N1 and N2,
follow a Gaussian distribution with mean having the
same value as the variance, their probability distribu-
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tion functions can be written as follows

PN1 =
1√

2π < N1 >
exp

(
− (N1− < N1 >)2

2 < N1 >

)
(15)

PN2 =
1√

2π < N2 >
exp

(
− (N2− < N2 >)2

2 < N2 >

)
(16)

In order to get the correlation between these two parti-
cles in a range of values of the impact parameter, a two
dimensional distribution constituting of the product of
the two Gaussian distribution functions for N1 and N2

was then considered. This is given by the equation that
follows

PN1,N2 = exp

(
− (N1− < N1 >)2

2 < N1 >
− (N2− < N2 >)2

2 < N2 >

)
(17)

Different values of the number of participants where
taken from the Optical Glauber model, which then re-
sulted in a range of values for the produced particles,
N1 and N2,for which a contour plot was then plotted
(Fig.(4)). Each contour represents a confidence interval
of 1σ with a given impact parameter (Fig.(4)). In fact,
it can trivially be shown from equation (17), that these
contours are ellipses, and the region for all possible val-
ues of N1 and N2 with a confidence interval of 1σ was
enclosed by the two curves touching the circumference
of all produced contours. As the range of the impact
parameter is taken infinitesimally small, the whole re-
gion will be filled with elliptical contours, and hence a
random sample of points (Fig.(4)) was then taken inside
this region in order to get a plot on how the correlation
between these two produced particles is changing.

Figure 4: Scatter plot showing the production of two distinct
particles, N1 and N2.

The correlation between the two produced particles
as a function of the impact parameter, is illustrated, in
which the dashed line is the analytical fit, whereas the
solid line represents the actual points taken from the
sample in the defined region (Fig.(5)).

Figure 5: Plot showing the correlation coefficient, ρ, between the
produced particles N1 and N2 as a function of the impact param-
eter.

5 Conclusion

The Glauber model as used in ultrarelativistic heavy
ion physics is based purely on nuclear geometry. It
treats the nucleus-nucleus collision as a series of nucleon-
nucleon collision processes. The assumption that A+B
collisions can be viewed as a sequence of nucleon-
nucleon collisions and that individual nucleons travel
on straight-line trajectories comes from its origin as
a quantum-mechanical multiple-scattering theory. The
Glauber model provides us with the number of partici-
pating nucleons and the number of binary collisions for
a given impact parameter at a given center of mass en-
ergy. With the number of participants, Npart, and the
number of binary nucleon-nucleon collisions, Ncoll, the
Glauber model introduces quantities that are essentially
not measurable. Only the forward energy in fixed-target
experiments has a rather direct relation to Npart.

One main reason for using geometry-related quanti-
ties such as Npart calculated with the Glauber model
is the possibility of comparing centrality-dependent ob-
servables measured in different experiments. Basically
all experiments calculate Npart and Ncoll in a similar
way using Monte Carlo implementation of the Glauber
model so that the theoretical bias introduced in the com-
parisons is typically small. Thus, the Glauber model
provides crucial interface between theory and experi-
ment.

The Glauber model comes in two variants, namely the
Optical Glauber model and the Monte Carlo Glauber
model. While in the Optical Glauber model the nu-
cleus is considered as a smooth matter density, in the
Monte Carlo Glauber model, the nucleons are popu-
lated stochastically according to the given nuclear den-
sity profile. For the Optical Glauber model, the whole
procedure is done analytically, whereas in the Monte
Carlo version, it is counted. In the case of this study,
only the Optical Glauber approach was considered.

The fact that many ultrarelativistic A+B collisions
can be understood purely based on geometry led to a
widespread use of the Glauber model. A good example
is the total charged-particle multiplicity that scales as
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Npart over a wide centrality and center-of-mass energy
range. Another example is the anisotropic momentum
distribution of low-pT (pT < 2 GeV/c) particles with
respect to the reaction plane. Another important appli-
cation is in the study of hard scattering processes.

One may conclude that for central collisions, the par-
ticles produced are not related with each other, but as
soon as the collisions happen to be shifted from the cen-
tral position, the particles produced will be highly cor-
related with each other (Fig.(5)). In fact the plot for the
correlation as a function of the impact parameter shows
that the value of the correlation reaches asymptotically
unity very fast, hence showing a very strong correlation
between the produced particles (Fig.(5)).
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Appendix 1

Referring to section 4, the particles produced after a
collision were assumed to follow a Poisson distribution.
One can hence consider a finite amount of produced par-
ticles by considering a finite amount of Poisson distri-
butions, not necessarily distinct. Different Poisson dis-
tributions, with distinct mean and hence variance, are
considered as the produced particles, and the distribu-
tion on the right hand side of the plot is the sum of all
of these distributions (Fig.(6)). Hence this latter distri-
bution represents the distribution produced by the total
amount of particles produced after a collision. We now
show that the sum of these Poisson distributions is again
a Poisson distribution. We prove further that, since we
considered these distributions as Gaussian rather than
Poisson, the sum of finite Gaussian distributions is again
a Gaussian distribution. Moreover, it can trivially be
proved, that the convolution of distinct Gaussian distri-
butions represents actually the sum of Gaussian distri-
butions.

Figure 6: Plot showing a finite number of distinct Poisson distri-
butions on the left hand side, with the sum of these distributions
plotted on the right hand side of the plot. The dashed lines rep-
resent the mean, and hence the variance of each respective distri-
bution.

We shall prove this result by mathematical induction,
although other methods might exist.

We first consider two random variables, N1 and N2, to
be independent Poisson random variables with param-
eters < N1 > and < N2 >. We show that the random
variable N = N1 + N2 is also a Poisson random vari-
able. Indeed, we consider the moment-generating func-
tions, MN1

(t) and MN2
(t), rather than the probability

distribution functions of random variables N1 and N2,
and we use the following theorem in order to prove our
result.

Theorem

Let W1, W2,..., Wn be independent random variables
with moment-generating functions MW1

(t), MW2
(t),...,

MWn(t). Then for the random variable W=W1 +W2 +
...+Wn, the moment-generating function is given by

MW (t) = MW1(t) ∗MW2(t) ∗ ... ∗MWn(t) (18)

Now for a Poisson distribution

Pλ(k) =
exp(−λ)λk

k!
k = 0, 1, 2, ... (19)

the moment-generating function is given by

Mλ(t) = exp(−λ+ λ exp(t)) (20)

Hence,

MN1
(t) = exp(− < N1 > + < N1 > exp(t)) (21)

MN2
(t) = exp(− < N2 > + < N2 > exp(t)) (22)

Hence for the random variable N = N1 + N2, the
theorem implies that

MN (t) = MN1
(t) ∗MN2

(t)

= exp(−(< N1 > + < N2 >)

+ (< N1 > + < N2 >) exp(t)) (23)
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But this is the moment-generating function of Poisson
random variable N , with its parameter being the sum
of < N1 > and < N2 >. Hence, N is a Poisson random
variable, being the sum of two independent Poisson ran-
dom variables.

We now suppose that N1, N2, ...., Nj are independent
Poisson random variables with parameters < N1 >,<
N2 >, ..., < Nj > respectively, and that the random

variable NN =
∑j
k=1Nk is also a Poisson random vari-

able.
We now show that for N1, N2, ...., Nj , Nj+1 Poisson

random variables with parameters < N1 >,< N2 >
, ..., < Nj >,< Nj+1 > respectively, the random vari-

able NN+1 =
∑j+1
k=1Nk is also a Poisson random vari-

able.
Indeed,

NN+1 =

j+1∑
k=1

Nk =

j∑
k=1

Nk +Nj+1 (24)

is a sum of two independent Poisson distributions, which
we have already proved that it is again a Poisson distri-
bution. Hence by mathematical induction, we showed
that a finite sum of independent Poisson distributions,
is again a Poisson distribution.

In a similar way, one can prove by the same argument,
that a finite sum of Gaussian distributions, is again a
Gaussian distribution. One has to keep in mind that
the moment-generating function for a Gaussian distri-
bution is now given by,

MN (t) = exp

(
µt+

1

2
σ2t2

)
(25)

where µ and σ are the mean and standard deviation
respectively. Moreover, one can also prove that the con-
volution of Gaussian distributions is the sum of the dis-
tributions.
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